IDEC Chip Design Contest

A Reconfigurable Ultrasonic Pulser-Reciever Circuit for a **Transducer with Large Capacitive Load**

Hyun-Tae Park¹, and Ji-Yong Um^{1,2} ¹Department of Electrical and Electronic Engineering, Hannam University ²Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology

Introduction

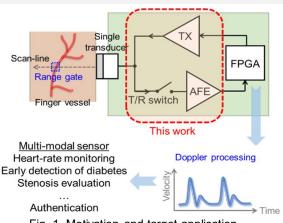


Fig. 1. Motivation and target application

- Target application
- Ultrasonic sensor module with single transducer
- Focus of this work
- Transducer interface circuit with reconfigurable topology
- Primary requirements and countermeasures

• •		
Requirement	Countermeasure	
Large capacitive load (few nF) Center freq. up to 10 MHz	Minimum transistor stack in High-voltage pulser	
Small active area	Reconfigurable topology including pulse and T/R switch	
Low noise performance of preamplifier	Optimization of operational region of transistors	

Schematic Diagram

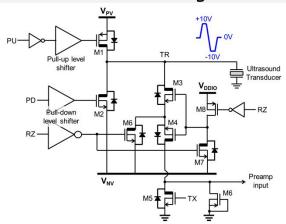


Fig. 2. Schematic of high-voltage pulser with T/R switch

- Reconfigurable high-voltage pulser with T/R switch
- Bipolar/Unipolar pulsing with 5V/3.3V logic control
- GND-path HV switch reconfigured as T/R switch

Measurements

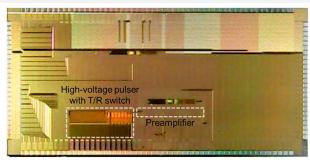


Fig. 3. Chip micrograph

Fig. 4. Measured waveforms

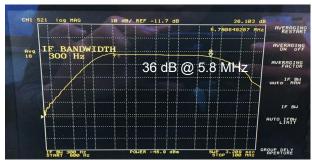


Fig. 5. Measured frequency response of preamplifier

Summary

	This work	JSSC'20	JSSC'13
Process	180nm BCD	180nm BCD	180nm HV CMOS
Max output	20 Vpp	60 Vpp	30 Vpp
Max. carrier frequency	11 MHz	9 MHz	3.3 MHz
Load cap	5 nF	18 pF	40 pF
T/R embedded	Yes	Yes	No
Active area	0.31 mm ²	0.167 mm ²	0.33 mm^2

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (2019R1I1A3A01060591), and chip fabrication along with EDA tools were supported by the IC Design Education Center (IDEC) of Korea.

